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The quality of an atomic basis set in molecular calculations can be characterized by the deviation 
of the valence-shell orbital energies from their values in a Hartree-Fock limit calculation. For atoms 
of a certain row of the periodic system, this quality appears to depend not only on the number of basis 
functions used in the calculations, as is usually accepted, but also on the number of valence shell 
electrons of the various atoms. 

As a consequence of this result, rules can be formulated for the combination of small atomic basis 
sets to a basis set for a molecular calculation. In fact, the best results are obtained with basis sets in 
which the deviations of all atomic valence shell orbital-energies from their Hartree-Fock limit values 
are of the same order of magnitude. 

Die Qualit~it eines Atombasissatzes zur Rechnung an Molekfilen kann durch die Abweichung 
der Energien der Orbitale der Valenzschalen yon den Werten einer Hartree-Fock-Grenzrechnung 
charakterisiert werden. Im Falle der Atome einer bestimmten Periode im Periodensystem scheint 
diese Qualit~it nicht nut yon der Zahl der bei der Rechnung benutzten Basisfunktionen abzuh~ingen, 
wie allgemein akzeptiert ist, sondern auch yon der Anzahl der Elektronen der Valenzschale der ver- 
schiedenen Atome. 

Aufgrund dieses Resultats k6nnen Regeln zur Kombination kleiner Atombasissatze zu einem 
Basissatz ffir Rechnungen an Molektilen formuliert werden. In der Tat werden die besten Resultate 
mit Basiss~itzen erhalten, bei denen die Abweichungen aller Orbitalenergien der Atomvalenzschalen 
yon ihrem Hartree-Fock-Grenzwert in der gleichen Gr6genordnung sind. 

Introduction 

In  general  non-empir ica l  molecular  calculat ions are performed with a set of 
basis funct ion buil t  up from atomic basis sets. The last few years a large n u m b e r  of 
a tomic basis sets have been published,  both  with Gauss ian  Type Orbi tals  (GTO's)  
[1-6] ,  and  with Slater Type Orbi tals  (STO's) [7-9] .  It  is dangerous,  however, to 
use just  some arbi t rary  combina t ion  of a tomic basis sets in a molecular  calculation,  
since there is a possibility that  the resulting basis set is "unba lanced"  as indicated 
by Mul l iken  [10]. U n b a l a n c e d  basis sets may lead to an incorrect  predict ion of 
various quant i t ies  like dipole momen t s  or charge dis t r ibut ions ob ta ined  from a 

popu la t ion  analysis. 
In  molecular  calculations,  usually little a t ten t ion  is paid to the quest ion which 

combina t ion  of a tomic basis sets on the various a toms in the molecule can be 
used to result in a balanced basis. 

Since at this m o m e n t  a large n u m b e r  of a tomic basis sets is available, we want  
to be able to compare  the qual i ty of these basis sets and  to decide which basis 

sets can be combined.  
Usual ly  the qual i ty of an opt imized atomic basis set is assumed to be deter- 

mined  by the n u m b e r  of funct ions of the various symmetry types in the set, e.g. 
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Fig. 1. A e2s and A cap obtained with a minimum STO basis for the averaged configuration s 2 p" of the 
atoms B to Ne 

for a certain atom a set consisting of three s-type functions and two p-type func- 
tions, a (3, 2) set, is better than a set consisting of two s-type functions and one 
p-type function, a (2, 1) set. 

There is, however, another parameter that affects the quality of the basis set. 
Even when an atomic basis set is completely optimized, the deviations of the 
orbital energies calculated with this basis set from the values obtained in the 
Hartree-Fock limit, are a function of the number of electrons in the different 
shells of the atom. This effect especially shows up when an atomic shell is being 
filled. For  example, in a set of calculations for the first-row atoms with a fixed 
number of s- and p-type basis functions the difference between e2v in these calcula- 
tions and ~2p in the Hartree-Fock limit, 

A ~2v = e2v(calc) - ~2t,(H-F'), (1) 

becomes rapidly larger going from B to Ne. The value of A ezs, similarly defined as 

Aezs = s2s(ca lc )  --  e2s(H.F.), (2) 

also becomes larger, but less than the value of A ezv. 
As an illustration the values of A e2s and A e2p for a minimal STO calculation 

are shown in Fig. 1 for the averaged configurations sZp" of the atoms B through 
Ne. Likewise, the same dependence of the quality of the basis set on the number 
of electrons can be found for other basis sets, G TO  sets and STO sets of any size. 
However, for larger basis sets the effect rapidly becomes much less pronounced. 
This effect is not restricted either to atoms with s- and p-type functions. A similar 
effect occurs with the d-electrons of transition metal atoms. 

Theory 

If we want to discuss the origin of the deviations of the orbital energies, we 
first have to analyse the effect somewhat more in detail. The values of A sl for a 
series of atoms in which one shell is being filled, obtained with basis sets of the 
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same size, may be expanded in a limited power series in n, the number of electrons 
in that particular shell. 

The coefficients of the different powers of n are shown in Table 1 for the A e2p 
values of some STO basis sets for the first row atoms [11]. Terms that do not 
make a significant contribution to the fit of the expansion are omitted. In this 
table we see that if the values of A e are relatively small, there is a linear correlation 
between A e and n. If, however, the deviations are larger, a quadratic term appears. 

In the same way we can analyse the mean deviation of the function calculated 
in a certain basis from the corresponding function in the Hartree-Fock limit, 
defined as 

(A ~2v) = [ I  { ~zp(H-F-) - ~Zp (calc)} a dz]~ (3) 

for the same STO-basis sets. The results of these calculations are shown in Table 2. 
From these results we may conclude that the linear dependance of (A 7 ~) of n is 
small compared with the constant term. We therefore may introduce as a perturba- 
tion in our Hartree-Fock equations some A 7 ~ that is independent of n. 

Suppose we want to solve the Hartree-Fock equations 

F ( 1 )  ~tT/i (1) = gi ~I//(1) (4) 

by expanding ~i in a limited basis set. The resulting solution k~ in general will 
deviate from the correct solution 7Jl (Hartree-Fock limit). This in turn affects the 
Hartree-Fock opera~or F, defined by 

F(1) = h(1) + ~ 5 7*k(2 ) (1 -- P12) 7,k(2) dz 2 (5) 
k r12 

yielding 

F(1) = h(1) + y,~ ~'k(2) (1 --/'12) qtk(2) d.c2 " (6) 
k r l  2 

Introducing A % = ~i - 7*i the deviation in the Hartree-Fock operator will be 

AF(1) = ~ AT*k(2 ) (1-P12)  7,k(2)dz 2 + ~.~ 7,k(2) (1 --P12) Ag.,k(2) dz2 .  (7) 
k Y12 k r12 

We now can calculate the deviation in the one-electron energies according to 

A~, = 2(A 7~,1F [ t/,) + (7',1AF I ~ , ) .  (8) 
The result is 

Ae, = 2(A ~[h l  ~u) + 2  Z [(A ~11]lkltlk) 
k (9) 

-- ( A TJi ~k l ~Pi ~k) + ( ~P~ ~i l A Ttk Ttk) -- ( ~P~ A ~Pk l gJi ~k) ] . 

The summation over k in the Eqs. (5) to (9) is in principle over all electrons. 
This summation can be seperated into a summation over electrons in inner shells 
and a summation over electrons in the valence shell. The first sum contributes 
to the constant term in Table 1, the second sum leads to a term that is proportional 
to the number of electrons in the valence shell (since in that case all integrals 
(A ~ l  kUk 7~k) etc. will approximately have the same value). As a consequence 
of this, A el will to a first-order approximation be proportional to n. 

7 Theoret. claim. Acta (Bed.) Vol. 27 
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Table 1. Coefficients in the power series expansion of Aezp in n for a number of STO basis sets for the 
first row atoms [11]. l 0  s Ae2p = a + b n  + cn z + ... (non-significant entries are omitted) 

a b c 

minimal  - 3 1 6  547 718 
(2, 1) 
marginal 114 170 20 
(3, 2) 
nominal  - 29 15 - -  
(4, 3) 

If the deviations in the molecular orbitals are small, we only have to take into 
account these first-order terms. However, when the deviations are larger, we also 
have to consider higher-order terms, as can be seen in Table 1 for the minimal 
basis set. 

Atomic Calculations 

In Figs. 2 through 5 some examples are given of the change of A e with the 
number of electrons in the open shell. In these examples calculations from liter- 
ature are used on a special state of a configuration (in general the ground state). 
Therefore the electronic interaction does not change as smoothly along a series 
of atoms as for the averaged configuration. Especially nitrogen (4S) and manganese 
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Fig. 2. A ezp for a series of STO basis sets. For each line the number of p-type functions is indicated 
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Fig. 3. Ae2p for a series of G T O  basis sets. For each line the number  of p-type functions is indicated 

(6S), with one electron in each orbital of the open shell, have large exchange 
contributions that cancel part of the Coulombic repulsion terms and therefore 
the values of A e for these atoms are relatively small. 

Fig. 2 shows the values of A e2p for a series of STO basis sets with an increasing 
number of p-type functions and a comparable number of s-type functions [11]. 

In Fig. 3 the same is done for a series of G TO  basis sets [12]. Figs. 4 and 5 
illustrate the situation for transition metals. Here, too, all calculations are for the 
lowest state of the (3d)"(4s) 2 configuration. As reference calculations we used the 
large basis STO calculations of Clementi [8]. In Fig. 4 the results are given for the 
calculations ofRoos et al. [4], who used a basis of nine s-type, five p-type and three 
d-type GTO's. In Fig. 5 similar results are shown for the basis sets published by 
Wachters [5], who used a (14, 9, 5) set. 

We obtain another illustration, when we consider Van Duyneveldt's [6] large 
series of optimized atomic GTO basis sets. We can calculate the A e-values for all 
calculations of this series, a selection of which is given in Table 3. From this 
table we see for example that the A e-values of a boron (5, 3) set are almost equal 
to the A e-values of a fluorine (7, 4) set. 

All the basis sets discussed so far in this chapter are not contracted. With 
contracted basis sets the atomic orbitals are disturbed by the contraction and are 
no longer fully optimized. Now the general trend will be the same, but the position 
of the curve is contraction-dependent. As an example Table 4 gives A e-values for 
the contracted GTO basis sets of Basch et al. [13-1, (15 s-type, 8 p-type and 5 d- 
7* 
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Fig. 4. A ~3a and A e4s for the basis sets of Roos e t  al. [4] 
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Fig. 5. Ae3e and Ae4s for the basis sets of Wachters [5] 

Table 2. Coefficients in the power series expansion of <A ~2p> in n for a number of STO basis sets for the 
first row atoms. 103 <A ~P2~,) = a + b n  + . . .  (non-significant entries are omitted) 

a b 

minimal 97 14 
(2, 1) 
marginal 14 2 
(3, 2) 
nominal 0.01 - -  
(4, 3) 
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for B to Ne with large accurate basis AE, Ael~, Ae2s and Aeze for a number 
of basis sets from van Duyneveldt [6] 

Large E 
accurate els 
basis 82, 

~2p 

B C N O F Ne  

-24.529 -37.689 -54.401 -74 .809 -99.409 -128.547 
- 7.695 -11.326 -15.629 -20.669 -26.383 - 32.773 
- 0.495 - 0.706 - 0.945 - 1.244 - 1.573 - 1.930 
- 0.310 - 0.433 - 0.568 - 0.632 - 0.730 - 0.850 

(4, 2) 103 A E 193 333 583 834 1228 1731 
103 AI31s 63 80 101 124 153 186 
103 A 82s 17 29 47 72 102 138 
103 Ae2p 53 59 89 135 188 249 

(5, 2) 10 a A E 82 173 321 551 869 1288 
103Ael~ 5 - 3 - 11 - 19 - 28 - 36 
103 Ae2~ 16 28 12 69 99 133 
103 Aezp 34 57 75 132 185 244 

(5, 3) 103 A E 63 107 170 256 368 508 
103 A ~1~ 18 25 34 45 59 75 
103 A ezs 17 28 42 61 84 109 
103 A e~p 15 23 33 48 66 85 

(6, 3) 103 AE 38 66 106 167 248 353 
103 A el~ 16 21 28 37 45 61 

10 a A ~2~ 2 5 9 15 23 33 
103 d ~2p 7 13 20 33 48 65 

(7, 4) 103 A E 10 17 28 43 63 89 
103 dels 4 7 9 13 17 23 
103 A ~;2s 2 2 4 6 3 13 
103Ae2p 1 4 6 10 14 19 

(8, 4) 103 A E 4 9 16 28 44 65 
103Aels 1 2 3 5 8 10 

103Aez, 1 2 3 6 9 12 
103AeEp 2 3 5 9 14 19 

(9, 5) 103 AE 2 3 5 8 13 19 
103 A el~ 1 1 2 2 3 5 
10 3 A ~2~ 1 1 2 3 3 5 

10 a A e2p 1 1 2 3 4 6 

Table 4. A E, A e3~, A e3a and A e4, for the contracted GTO basis sets of Basch et al. [13] 

AE A~3p Ae3a Ae4s 

Sc 0.8203 -0 .0115 -0.0121 0.0023 
Ti 0.9165 - 0.0055 - 0.0067 0.0032 
V 1.0204 - 0.0029 - 0.0055 0.0042 
Cr 1.1244 - 0.0024 - 0.0060 0.0047 
Mn 1.2462 0.0181 0.0077 0.0062 
Fe 1.3573 -0 .0042 0.0158 0.0048 
Co 1.4881 0.0064 0.0037 0.0058 
Ni 1.6419 0.0481 0.0371 0.0090 
Cu 1.7882 0.0044 0.0049 0.0075 
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type GTO's, contracted to 4 s-type, 2 p-type and 1 d-type function, i.e. a (15, 8, 5) 
set contracted to [4, 2, 1]). The data in this table show that the contraction may 
result in additional deviations, as can be seen in the case of nickel, where the 
A e-values are much larger than for the other atoms. Furthermore the 3p and 3d 
orbital energies for Sc through Cr are about 0.005 a.u. below Clementi's values 
[8], although the total energy is about 1 a.u. above the value from Clementi's 
caJculation. Mostly this effect arises from the frozen core orbitals. Furthermore 
the incorrect description of the inner orbitals may cause a deformation of the 
outer orbitals, but this will not be the case when the contracted combinations are 
carefully chosen as is discussed by Dunning [14]. 

Molecular Calculations 

The results of the previous section show that the deviation in the orbital 
energies from the Hartree-Fock limit situation depends both upon the number of 
basis functions and the number of electrons within a shell. This may have its 
consequences for molecular calculations. It was shown that for a balanced 
calculation the number of basis functions on different atoms may have to be 
different, especially when a small basis set is used, as is the case e.g. in calculations 
on large molecules. 

To study the influence in molecular calculations we have performed a set of 
calculations on the BF molecule using G T O  basis sets of different size. We have 
compared these results with a calculation in which the large basis set of Huzinaga 
and Arnau [15] was used. This basis set can be characterized as (11, 6) contracted 
to a [4, 2] set for each of the atoms B and F. In this reference calculation we have 
deliberately not used polarization functions (d-type orbitals and higher), because 
we wanted to keep the calculations with small and large basis sets comparable. 
The reference calculation can be considered to approach the s, p-limit. The basis 
sets we used in this test are those of Whitman and Hornback [12]. Their quality 
in atomic calculations is shown in Table 5, which gives the energy differences 
between the atomic limited basis set calculations and the Hartree-Fock calcula- 
tion. 

Since not all the basis sets that we derive from the results of Whitman and 
Hornback are optimized, the separate values of A e given in Table 5 are not very 
reliable as a test for the quality of the basis set, since in these cases one or more 
e-values may by accident be quite correct, e.9. a poor  description of the ls orbital 
may result in an incorrect els but an almost correct e2s. As a matter of fact, the 

Table 5. B and F atomic basis sets. Values of A E, A els, A e2, and A e2~ for a number  of basis sets from 
Whi tman  and Hornback 112] 

Basis B F 

set A E A el, A e2~ A e2p A E A el~ A e2, A e2p 

(3, 1) 0.816 0.253 0.004 0.125 5.267 0.275 0.004 0.595 
(3, 2) 0.735 0.351 0.030 0.045 2.992 1.073 0.156 0.218 
(3, 3) 0.718 0.359 0.029 0.027 2.495 1.143 0.135 0.094 
(4, 2) 0.193 0.071 0.018 0.038 1.230 0.189 0.110 0.201 
(4, 3) 0.175 0.081 0.018 0.02l 0.731 0.268 0.092 0.080 
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Table 6. Experimental dipole moment of BF and computed values of the dipole moment from 
calculations with various basis set. The dipole moments are given in Debye and have a positive sign 

for (B-F +) 

Basis gBF 

Huzinaga 0.51 
B(3, 1) F(3, 1) 4.41 
B(3, 1) F(3, 2) 0.93 
B(3, 2) F(3, 2) 1.59 
B(3, 2) F(3, 3) 0.53 
B (3, 2) F (4, 2) 1.48 
B(3, 2) F(4, 3) 0.43 

Experimental [22] 0.5 _ 0.2 

c o m b i n a t i o n  of  AE, Ae~s, Ae2s and  de2v gives a more  re l iable  picture.  The  in- 
fluence of  fur ther  op t ima l i za t i on  on molecu la r  calcula t ions ,  however ,  is small.  

The  qual i ty  of  these molecu la r  ca lcula t ions  can be inves t iga ted  by  compar ing  
the ca lcu la ted  d i p o l e m o m e n t s  with the exper imenta l  value [22] or  by analys ing  
the wave funct ion using s t a n d a r d  methods ,  l ike a Mul l iken  popu l a t i on  analysis  
[16] and  dens i ty  difference maps ,  in which the difference in e lec t ron densi ty  a long 
a line or  in a p lane  in the molecule  is visual ized [17-21] .  

The  ca lcula ted  d ipo le  momen t s ,  given in Table  6, indicate,  tha t  the charge  
d i s t r ibu t ion  found in the ca lcu la t ion  with the basis  of  H u z i n a g a  and  A r n a u  is 
correct ,  but  tha t  especial ly in ca lcula t ions  wi th  small  basis  sets large de fo rmat ions  
of  the charge  d i s t r ibu t ion  may  occur.  

Table 7. Gross atomic populations and overlap populations in BF 
basis sets 

from calculations with various 

Huzinaga a 4.24 5.76 0.025 
0.13 1.87 0.153 

total 4.50 9.50 0.331 
B(3, 1) F(3, 1) tr 4.40 5.60 0.162 

0.52 1.48 0.271 
total 5.44 8.56 0.704 

B (3, 1) F (3, 2) tr 4.34 5.66 0.285 
0.25 1.75 0.211 

total 4.84 9.16 0.707 
B(3, 2) F(3, 2) a 4.45 5.55 0.435 

rc 0.24 1.76 0.197 
total 4.93 9.07 0.829 

B (3, 2) F (3, 3) a 4.45 5.55 0.387 
0.15 1.85 0.163 

total 4.75 9.25 0.713 
B (3, 2) F (4, 2) a 4.40 5.60 0.388 

0.24 1.76 0.195 
total 4.88 9.12 0.778 

B(3, 2) F(4, 3) a 4.40 5.60 0.342 
~z 0.15 1.85 0.162 
total 4.70 9.30 0.666 

Basis Symmetry N B Nv PBF 
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Table 8. Net population per set of orbitals in BF from calculations with various basis sets 

Basis s (B) p ~r (B) p ~r (B) s (F) p~r (F) p~z (F) 
(each) (each) 

Huzinaga 3.82 0.41 0.05 3,98 1.77 1.79 
B(3, 1)F(3, 1) 3.86 0.46 0.38 3.94 1.58 1.35 
B(3, 1) F(3, 2) 3.85 0.35 0.14 3.67 1.85 1.65 
B(3, 2) F(3, 2) 3.78 0.45 0.28 3.66 1.68 1.66 
B(3, 2) F(3, 3) 3.82 0.43 0.07 3.58 1.66 1.77 
B (3, 2) F (4, 2) 3.78 0.43 0.14 3.73 1.67 1.67 
B (3, 2) F (4, 3) 3.83 0.40 0.07 3.66 1.77 1.77 

A more directly calculated charge distribution is given in Table 7, in which the 
results of a population analysis for the various computations are shown. 

The charge density shift from B to F of 0.5 electron in the calculation using 
Huzinaga's basis set is rather large in comparison with the experimental dipole 
moment but this has to be ascribed to the division of the overlap population in 
two equal parts in a Mulliken population analysis. 

In Table 8 the net populations are shown for sets of orbitals of the same type, 
e.g. the set of the s-orbitals on B. In this table it is especially interesting to see 
how the p~ and the p~ populations on F increase and the s population decreases 
when the basis on this atom, or on both atoms, becomes larger. For larger basis 
sets these values approach the values from the calculation with the large set from 
Huzinaga, but using a small number of p-functions on F, the electrons shift to 
other, energetically more favourable orbitals. 

In the electron density difference map, shown in Fig. 6 for the difference 
between the small basis (B(3, 1) and F(3, 1)) and the large basis calculation, this 

F 

, \  

? 
Fig. 6. Density difference map for BF between the small and the large basis calculation, lines of 
zero density difference, - 1 -  lines of positive density difference, - . . . .  lines of negative density 
difference. Starting from the zero lines, the positive and negative lines represent successively 

_+0.003, _+0.01, _+0.03, +0.1 

B 
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Fig. 7. Density difference along the molecular axis of BF between a number of small-basis calculations 
and the large-basis calculation. (a) B(3, 1) F(3, 1), (b) B(3, 1) F(3, 2), (c) B(3, 2) F(4, 3) 

same effect of a shift from the F 2p orbitals to other orbitals shows up. The effect 
for the n-orbitals is the same as for the p,-orbitals, although perhaps somewhat 
weaker. We therefore may as well concentrate on the a-situation and give for a 
selection from these calculations the density difference along the molecular 
axis (Fig. 7). In this figure, going from (a) to (b), we see that mainly the description 
of the valence electron distribution at fluorine is improved, while from (b) to (c) 
most of the improvement is found in the description of the core electron distribu- 
tion of fluorine. 

Both from the calculated dipole moment and from the population analysis, 
it is clear that the best description is not that using an equally small number of 
functions for B and F, but that a description with more functions on F than on B 
gives a better charge distribution. In fact, the best description is obtained if the 
values of A e for all (valence) orbitals are of the same order of magnitude. 



106 H.B. Jansen and P. Ros: 

This conclusion will have consequences for the choice of the atomic basis sets 
in other molecular calculations. To reach a certain level of accuracy in a molecular 
calculation we now seek those basis sets on the different atoms that have the 
same order of magnitude for A e. From Van Duyneveldt's [6] series of atomic 
basis sets (compare Table 3) we therefore may combine a boron (5, 3) set with a 
fluorine (7, 4) set, and so on. The same procedure can be followed for molecules 
with transition metals. Wheras to reach a certain degree of accuracy for vanadium 
the basis set from Roos et al. [4], can be used, we shall have to use in the same 
situation Wachters' set [5] for nickel (compare Figs. 4 and 5). 

In this connection one remark has to be made. Nearly all atomic basis set 
calculations are on the lowest state of a certain configuration. In molecular 
calculations we are not interested in that specific state, but in a situation that in 
general will be much closer to the averaged configuration. Therefore it would be 
preferable to publish atomic basis set calculations for averaged configurations. 
Even closer to the situation in a molecule is the valence state configuration instead 
of the ground state configurations. It would therefore be most profitable for use 
in molecular calculations if these atomic calculations to obtain optimal basis 
sets, would - also - be performed for the valence state configuration. However, 
the influence of these changes on the results of molecular calculations will not be 
as large as the influence of an unbalanced basis set. 

Conclusions 

From the previous sections we may summarize the following conclusions: 
The quality of optimized atomic basis sets depends, for atoms in the same row 

of the periodic system, not only on the number of basis functions, but also on the 
number of valence electrons. 

Basis sets built up from small atomic basis sets of the same size for atoms at the 
beginning and at the end of atoms of the periodic system are unbalanced and 
usually lead to a severe deformation in the calculated charge distribution. 

In order to obtain a balanced basis set in molecular calculations more basis 
functions have to be used for an atom at the end of a row of the periodic system than 
for an atom at the beginning of the row. 

A simple method to find a balanced basis set is to select the atomic basis sets 
in such a way that the A e-values for all (valence) orbitals are of the same order of 
magnitude. 
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